What is the 6th term of the geometric sequence where a1 = -4096 and a4 = 64?


\bf \begin{array}{llccll}
term&value\\
\text{\textemdash\textemdash\textemdash}&\text{\textemdash\textemdash\textemdash}\\
a_1&-4096\\
a_2&-4096r\\
a_3&-4096rr\\
a_4&-4096rrr\\
&-4096r^3\\
&64
\end{array}\implies -4096r^3=64
\\\\\\
r^3=\cfrac{64}{-4096}\implies r^3=-\cfrac{1}{64}\implies r=\sqrt[3]{-\cfrac{1}{64}}
\\\\\\
r=\cfrac{\sqrt[3]{-1}}{\sqrt[3]{64}}\implies \boxed{r=\cfrac{-1}{4}}\\\\
-------------------------------

\bf n^{th}\textit{ term of a geometric sequence}\\\\
a_n=a_1\cdot r^{n-1}\qquad 
\begin{cases}
n=n^{th}\ term\\
a_1=\textit{first term's value}\\
r=\textit{common ratio}\\
----------\\
r=-\frac{1}{4}\\
a_1=-4096\\
n=6
\end{cases}
\\\\\\
a_6=-4096\left( -\frac{1}{4} \right)^{6-1}\implies a_6=-4^6\left( -\frac{1}{4} \right)^5

Rate answer


Answer:

The sixth term of the geometric sequence is 4.

Step-by-step explanation:

Given : Geometric sequence term are a_1=-4096 and  a_4=64    

To find : What is the 6th term of geometric sequence ?

Solution :

a_1=-4096

We know, fourth term is a_4=ar^3

a_4=64    

So, 64=(-4096)r^3

\frac{64}{(-4096)}=r^3

-0.015625=r^3

r=(-0.015625)^{\frac{1}{3}}

The sixth term is  a_6=ar^5

Substitute,

a_6=(-4096)((-0.015625)^{\frac{1}{3}})^5

a_6=-4096((-0.015625)^{\frac{5}{3}})

a_6=-4096(-0.0009765625)

a_6=4

Therefore, The sixth term of the geometric sequence is 4.


Rate answer
Wrong answer?

If your question is not fully disclosed, then try using the search on the site and find other answers on the subject Mathematics.

Find another answers

Load image